Efficient Simulation for Large Deviation Probabilities of Heavy - Tailed Sums

نویسندگان

  • L. F. Perrone
  • F. P. Wieland
  • J. Liu
  • B. G. Lawson
  • D. M. Nicol
  • Jose H. Blanchet
  • Jingchen Liu
چکیده

Let (Xn : n ≥ 0) be a sequence of iid rv’s with mean zero and finite variance. We present an efficient statedependent importance sampling algorithm for estimating the tail of Sn = X1 + ...+Xn in a large deviations framework as n ↗ ∞. Our algorithm can be shown to be strongly efficient basically throughout the whole large deviations region as n ↗ ∞ (in particular, for probabilities of the form P (Sn > κn) as κ > 0). The techniques combine results of the theory of large deviations for sums of regularly varying distributions and the basic ideas can be applied to other rare-event simulation problems involving both light and heavy-tailed features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

Large Deviations for Minkowski Sums of Heavy-tailed Generally Non-convex Random Compact Sets

We prove large deviation results for Minkowski sums of iid random compact sets where we assume that the summands have a regularly varying distribution. The result confirms the heavy-tailed large deviation heuristics: “large” values of the sum are essentially due to the “largest” summand.

متن کامل

Henrik Hult , Filip Lindskog and Thomas Mikosch : Functional large deviations for multivariate regularly varying random walks

We extend classical results by A.V. Nagaev (1969) on large deviations for sums of iid regularly varying random variables to partial sum processes of iid regularly varying vectors. The results are stated in terms of a heavy-tailed large deviation principle on the space of càdlàg functions. We illustrate how these results can be applied to functionals of the partial sum process, including ruin pr...

متن کامل

Estimating tail probabilities of heavy tailed distributions with asymptotically zero relative error

Efficient estimation of tail probabilities involving heavy tailed random variables is amongst the most challenging problems in Monte-Carlo simulation. In the last few years, applied probabilists have achieved considerable success in developing efficient algorithms for some such simple but fundamental tail probabilities. Usually, unbiased importance sampling estimators of such tail probabilities...

متن کامل

Maxima of Sums of Heavy-tailed Random Variables

In this paper, we investigate asymptotic properties of the tail probabilities of the maxima of partial sums of independent random variables. For some large classes of heavy-tailed distributions, we show that the tail probabilities of the maxima of the partial sums asymptotically equal to the sum of the tail probabilities of the individual random variables. Then we partially extend the result to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006